Monday, December 23, 2024
Monday, December 23, 2024

Neutron capture research offers insight into astrophysics and detector design

Must read

John Furner
John Furnerhttps://dailyobserver.uk
Experienced multimedia journalist with a background in investigative reporting. Expert in interviewing, reporting, fact-checking, and working on a deadline. Excel at cinematic storytelling and sourcing images, sound bites, and video for multimedia publication. Work well with photographers and videographers when not shooting his own stories, and love to collaborate on large, in-depth features.

The Daily Observer London Desk: Reporter- John Furner

Photograph of the C6D6 detector system in the Back-n facility of the CSNS. A gold sample is placed in the aluminum sample holder. Credit: Nuclear Science and Techniques (2023). DOI: 10.1007/s41365-023-01337-6

In a study published in the journal Nuclear Science and Techniques, researchers from Sun Yat-sen University have conducted a novel study on neutron capture by bromine at the China Spallation Neutron Source, providing invaluable insights into both astrophysics and cutting-edge detector design.

At the China Spallation Neutron Source’s Back-n facility, researchers harnessed four specialized C6D6 detectors to observe prompt γ-rays from neutron-induced capture events. Leveraging advanced data analysis techniques, such as pulse-height weighting and double bunch unfolding methods based on Bayesian theory, they ensured meticulous background deductions, normalization, and corrections.

The SAMMY code, a multilevel R-matrix Bayesian tool, was central to analyzing the capture yields in the observed energy spectrum, enabling the extraction of resonance parameters. While their results aligned with prior studies, notable discrepancies with certain databases emerged.

The TALYS code, grounded in the Hauser–Feshbach statistical emission model, was vital in describing average cross-sections in unresolved resonance regions. The study’s pinnacle was calculating the Maxwell average cross sections (MACSs) for bromine isotopes and contrasting them with extant databases and recommended values.

Through a combination of precision and advanced methodologies, the team not only deepened the comprehension of neutron capture by bromine but also illuminated broader implications for astrophysics and detector design.

Moreover, these findings are set to shape the design and enhancement of upcoming neutron and γ-ray detectors, advancing the boundaries of nuclear experimentation. This study lays a solid foundation for subsequent investigations, poised to uncover more cosmic mysteries.

John Furner
John Furnerhttps://dailyobserver.uk
Experienced multimedia journalist with a background in investigative reporting. Expert in interviewing, reporting, fact-checking, and working on a deadline. Excel at cinematic storytelling and sourcing images, sound bites, and video for multimedia publication. Work well with photographers and videographers when not shooting his own stories, and love to collaborate on large, in-depth features.

PLACE YOUR AD HERE

- Advertisement -spot_img

More articles

PLACE YOUR AD HERE

- Advertisement -spot_img

Latest article

John Furner
John Furnerhttps://dailyobserver.uk
Experienced multimedia journalist with a background in investigative reporting. Expert in interviewing, reporting, fact-checking, and working on a deadline. Excel at cinematic storytelling and sourcing images, sound bites, and video for multimedia publication. Work well with photographers and videographers when not shooting his own stories, and love to collaborate on large, in-depth features.